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Duplications in 16p11.2 are a risk factor for schizophrenia

(SCZ). Using genetically modified zebrafish, Golzio and

colleagues identified KCTD13 within 16p11.2 as a major

driver of the neuropsychiatric phenotype observed in

humans. The aims of the present study were to explore the

role of KCTD13 in the development of SCZ and to provide a

more complete picture of the allelic architecture at this risk

locus. The exons of KCTD13 were sequenced in 576

patients. The mutations c.6G>T and c.598G>A were

identified in one patient each. Both mutations were

predicted to be functionally relevant and were absent from

the 1000 Genomes Project data and the Exome Variant

Server. The mutation c.6G>T was predicted to abolish a

potential transcription factor-binding site for specifity

protein 1. Altered specifity protein 1 expression has been

reported in SCZ patients compared with controls. Further

studies in large cohorts are warranted to determine the

relevance of the two identified mutations. Psychiatr Genet

26:293–296 Copyright © 2016 Wolters Kluwer Health, Inc.

All rights reserved.

Psychiatric Genetics 2016, 26:293–296

Keywords: autism spectrum disorder, copy number variants,
neurodevelopmental, psychosis, schizoaffective

aInstitute of Human Genetics, bDepartment of Genomics, Life and Brain Center,
cDepartment of Psychiatry and Psychotherapy, dDepartment of Clinical Chemistry
and Clinical Pharmacology, University of Bonn, Bonn, eDepartment of Psychiatry,
Ludwig-Maximilians-University Munich, fKbo Kliniken des Bezirks Oberbayern,
Munich, gDepartment of Genetic Epidemiology in Psychiatry, Central Institute of
Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg,
hDepartment of Psychiatry, University of Halle-Wittenberg, Halle, iIsar Amper
Klinikum München Ost, kbo, Haar, jInstitute of Neuroscience and Medicine (INM-
1), Structural and Functional Organisation of the Brain, Genomic Imaging,
Research Centre Juelich, Juelich, Germany, kFaculty of Science, Medicine &
Health, University of Wollongong, Wollongong, Australia and lDepartment of
Biomedicine, Division of Medical Genetics, University Hospital Basel, University of
Basel, Basel, Switzerland

Correspondence to Franziska Degenhardt, MD, Department of Genomics, Life
and Brain Center, Institute of Human Genetics, Sigmund-Freud-Straße 25, Bonn
53127, Germany
Tel: + 49 228 6885 433; fax: + 49 228 6885 401;
e-mail: franziska.degenhardt@uni-bonn.de

Received 17 December 2015 Revised 17 May 2016 Accepted 19 July 2016

Introduction
Schizophrenia (SCZ) is a common and often severely dis-

abling neuropsychiatric disorder. Patients show a variety of

symptoms, including hallucinations, delusions, disorganized

speech, affective flattening, and avolition (American

Psychiatric Association, 1994). The estimated heritability of

SCZ ranges between 60 and 80% (Sullivan et al., 2003; Wray

and Gottesman, 2012). Previous research has implicated a

small number of rare copy number variants (CNVs) from

specific chromosomal regions in the risk of SCZ (Malhotra

and Sebat, 2012; Sullivan et al., 2012; Rees et al., 2014).

One of these chromosomal regions is 16p11.2. Duplications

and deletions in 16p11.2 are particularly interesting as they

are implicated in mirrored phenotypes. Deletions in this

region are associated with macrocephaly and obesity

(Bochukova et al., 2010; Shinawi et al., 2010; Walters et al.,

2010; Jacquemont et al., 2011), whereas duplications in

16p11.2 are associated with microcephaly and low BMI

(Shinawi et al., 2010; Jacquemont et al., 2011). Furthermore,

deletions and duplications in this chromosomal region are

established risk factors for developmental delay, intellectual

disability, autism spectrum disorder, and epilepsy (Kumar

et al., 2008; Weiss et al., 2008; Shinawi et al., 2010; Xiang

et al., 2010; Sullivan et al., 2012). However, only duplications

in 16p11.2 increase the susceptibility to SCZ (odds ratio

∼10; McCarthy et al., 2009; Kirov et al., 2012; Sullivan et al.,

2012; Rees et al., 2014; Szatkiewicz et al., 2014).

The CNVs reported to date in 16p11.2 are flanked by

segmental duplications and are typically ∼ 600 kb in size,

spanning more than 25 genes (Weiss et al., 2008). Several

of these are interesting candidate genes for neu-

ropsychiatric phenotypes. Golzio et al. (2012) published

the results of an analysis in genetically modified zebrafish.

The authors generated evidence that KCTD13 is a major

driver of the mirrored neuroanatomical phenotypes of the
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CNVs in 16p11.2 (Malhotra and Sebat, 2012). In zebra-

fish, overexpression of the KCTD13 human transcript

caused microcephaly, which resembled the microcephaly

phenotype associated with the 16p11.2 duplication. In

contrast, inhibition of KCTD13 expression caused a mac-

rocephalic phenotype, which has been associated pre-

viously with the 16p11.2 deletion (Golzio et al., 2012;

Malhotra and Sebat, 2012). In addition, KCTD13 is located

in one of the 108 genome-wide significant loci reported in

the largest SCZ genome-wide association study world-

wide (36 989 patients and 113 075 controls; Schizophrenia

Working Group of the Psychiatric Genomics Consortium,

2014).

The aims of the present study were to explore the role of

KCTD13 in the development of SCZ and to provide a

more complete picture of the allelic architecture at the

16p11.2 risk locus. The identification of rarer variants in

this gene might provide genetic evidence for the role of

KCTD13 in susceptibility to SCZ. Furthermore, rarer

variants with higher penetrance might be more suitable

for functional follow-up studies than common variants

with small effects.

Methods
The study was approved by the respective ethics commit-

tees and all participants provided written informed consent

before inclusion. All study procedures were carried out in

accordance with the Code of Ethics of the World Medical

Association (Declaration of Helsinki). All participants were

of German descent according to self-reported ancestry.

Sample description

In total, 576 patients were included. The patients were

recruited from consecutive admissions to psychiatric inpa-

tient units in Germany. A lifetime ‘best estimate’ diagnosis

(Leckman et al., 1982) of SCZ according to the Diagnostic

and Statistical Manual of Mental Disorders, 4th ed., criteria

(American Psychiatric Association, 1994) was assigned on

the basis of the medical records, family history, and the

Structured Clinical Interview (Spitzer et al., 1992) and/or

the OPCRIT (McGuffin et al., 1991). Each individual was

of German descent according to self-reported ancestry.

Sanger sequencing

Primer design was based on the NCBI37/hg19 reference

sequence (Ensembl transcript ID: ENST00000568000).

All six coding exons and their flanking sequences (± 30 bp

of each exon analyzed) were amplified. Exons 3 and 4

were grouped together in one amplicon. Sanger sequen-

cing was performed in part at Beckman Coulter Genomics

(Takeley, UK) and in part at the Institute of Human

Genetics in Bonn. The variants identified were confirmed

at the Institute of Human Genetics in Bonn by sequen-

cing the complementary strand of a second, independent

amplicon. For the verification step, the 3130xl Genetic

Analyzer (Applied Biosystems, Foster City, California,

USA) was used. The nucleotide sequences obtained were

analyzed using SeqMan II (DNASTAR, Madison,

Wisconsin, USA). Primer sequences are obtainable upon

request.

Analysis of sequence variants

To predict the effect of an amino-acid change on protein

function, scores from the following three programs were

used: MutationTaster (Schwarz et al., 2010; http://muta

tiontaster.org/); PolyPhen-2, version 2.2.2 (Adzhubei et al.,

2010; http://genetics.bwh.harvard.edu/pph2/); and SIFT (Ng

and Henikoff, 2001; http://sift.jcvi.org/). To obtain informa-

tion on transcription-binding sites that might be altered by

the identified mutations, a search was performed of the

TRANSFAC public database (Wingender et al., 1996;

http://www.gene-regulation.com/pub/databases.html).

To maximize the number of patients included in the

sequencing step, no controls were sequenced and pub-

lically available datasets were used to calculate the allele

frequency of the identified variants. The allele frequency

of the identified variants was checked in the 1000

Genomes Project data (Abecasis et al., 2010; Total

European Ancestry EUR; http://www.1000genomes.org/),

and the Exome Variant Server (European American

population; Exome Variant Server, NHLBI GO Exome

Sequencing Project, Seattle, Washington, USA (http://evs.

gs.washington.edu/EVS/) (November 2015).

Results
High-quality sequencing data were obtained from (i) 552

patients for exon 1; (ii) 554 patients for exon 2; (iii) 563

patients for exons 3, 4, and 5; and (iv) 571 patients for

exon 6. Two variants were identified and verified in one

patient each: (i) c.6G>T in exon 1 and (ii) c.598G>A in

exon 5. These variants were present in neither the 1000

Genomes Project data nor the Exome Variant Server. No

additional variants were identified in our sample.

The mutation c.6G>T in exon 1 is a synonymous substitu-

tion, which was in-silico predicted to be disease causing

(MutationTaster). According to TRANSFAC (Wingender

et al., 1996), the alteration in the DNA sequence abolishes a

potential transcription factor-binding site for Sp1. The non-

synonymous substitution c.598G>A in exon 5 p.Asp200Asn

was predicted to be functionally relevant by Polyphen-2

(probably damaging); SIFT (damaging); and MutationTaster

(disease causing).

No parental DNA was available to test whether the

mutation c.6G>T in exon 1 was inherited or de novo. The

mutation c.598G>A in exon 5 had not been inherited from

the respective patient’s mother. However, the patient’s

brother was shown to carry the same mutation. No paternal

DNA was available for testing. The brother of the patient

was diagnosed with recurrent major depression, agor-

aphobia, and an unspecified eating disorder. No informa-

tion on the head size of the mutation carriers was available.
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Discussion
The synonymous mutation c.6G>T was in-silico predicted

to abolish a potential transcription factor-binding site for

specifity protein 1 (SP1). The zinc finger transcription

factor SP1 is located on chromosome 12q13.13 and reg-

ulates the expression of a number of genes by binding to

GC-rich sequences (Suske, 1999). Several studies have

reported altered SP1 expressions in patients with SCZ

compared with controls (Ben-Shachar and Karry, 2007;

Fusté et al., 2013; Pinacho et al., 2013, 2014). In a small

sample of first-episode psychosis patients, Fusté et al.

(2013) found reduced SP1 protein levels in mononuclear

cells from peripheral blood (Fusté et al., 2013).

Ben-Shachar and Karry (2007) carried out postmortem

expression analyses in various human brain regions. The

authors identified significantly decreased SP1 messenger

RNA levels in the prefrontal cortex and in the striatum,

with increased levels in the ventral parieto-occipital cortex

and in lymphocytes (Ben-Shachar and Karry, 2007).

Pinacho et al. (2014) reported significantly increased SP1

messenger RNA expression levels in the postmortem

hippocampus of patients with chronic SCZ (Pinacho et al.,

2014).

The mutation c.6G>T is not reported in either the 1000

Genomes Project data or the Exome Variant Server (total of

∼4.700 individuals). In the European (non-Finnish) sample

ascertained by the Exome Aggregation Consortium (ExAC)

(Cambridge, Massachusetts, USA) (http://exac.broadinstitute.

org), the c.6G>T mutation was detected in 43 of 7838

European individuals (allele frequency=0.003). Notably,

ExAC includes data from the 1000 Genomes Project, the

Exome Variant Server [NHLBI GO Exome Sequencing

Project, and sequencing studies in patients with psychiatric

disorders. The mutation was not detected in the

Schizophrenia Exome Sequencing Genebook (Purcell et al.,

2014; http://atgu.mgh.harvard.edu/∼ spurcell/genebook/genebook.cgi?

user= guest&cmd= search-gene&tbox=KCTD13)], which con-

tains the exome sequencing data of 2536 SCZ patients and

2543 controls.

The nonsynonymous substitution c.598G>A in exon 5

(p.Asp200Asn) is not reported in the 1000 Genomes Project

data or the Exome Variant Server. In the European (non-

Finnish) ExAC sample, the mutation c.598G>A was identi-

fied in 3 of 33 154 individuals (allele frequency=0.00005). In

the Swedish SCZ exome-sequencing study, this mutation

was identified in one patient and in one control (Purcell et al.,

2014; http://atgu.mgh.harvard.edu/∼ spurcell/genebook/genebook.cgi?

user= guest&cmd= search-gene&tbox=KCTD13). At the protein

level, the G>A substitution causes an exchange of the

charged acidic amino-acid aspartic acid to the polar uncharged

amino acid asparagine. Moreover, Asp200 is strictly conserved

at its corresponding position in KCTD13 as far down as Danio

rerio (data from Swiss-Prot).

To date, exome sequencing data from eight studies ana-

lyzing de-novo mutations in more than 850 patients with

SCZ have been published (Girard et al., 2011; Xu et al., 2011,

2012; Gulsuner et al., 2013; Fromer et al., 2014; Guipponi

et al., 2014; McCarthy et al., 2014; Kranz et al., 2015). None of

these studies reported a mutation in KCTD13.

The present study has three main limitations. First, the

sequencing of KCTD13 was restricted only to patients.

During the project design phase, we opted to sequence

KCTD13 in as many patients as possible, rather than

reducing the number of patients to cover the cost of

sequencing controls. Second, we could not determine the

phenotype of the mutation carriers identified in ExAC.

This hampers the interpretation of the allele frequency

reported for the two mutations identified in the present

analyses. In particular, information on the variant carriers’

head size and their mental wellbeing would have

improved the data interpretation. Third, we focused our

analysis on exonic variants and therefore cannot rule out

the presence of phenotypically relevant mutations in

regulatory regions. Furthermore, KCTD13 is an interest-

ing candidate gene on the basis of a study in genetically

modified zebrafish (Golzio et al., 2012). Therefore, we

cannot rule out that genetic variants in a/several other

genes located in 16p11.2 contribute toward the neu-

ropsychiatric phenotype observed among human CNV

carriers. Future studies sequencing all genes located in

16p11.2 are warranted to obtain more information on

their relevance to disease pathogenesis.

The lack of an association between single base pair muta-

tions in KCTD13 and SCZ, both in the present study and in

the previously published exome sequencing data, may

indicate that rare point mutations in this gene do not con-

tribute toward the genetic architecture of SCZ, or alter-

natively, that mutations in this gene are extremely rare. Our

study generated no strong evidence for the involvement of

damaging mutations in KCTD13 in the development of

SCZ. Therefore, the relevance of the identified rare

mutations in KCTD13 remains unclear. Further studies in

large, independent cohorts are now warranted.
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